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Elevated Cerebral Pressure Passivity Is Associated
With Prematurity-Related Intracranial Hemorrhage

WHAT’S KNOWN ON THIS SUBJECT: Blood pressure monitoring
alone does not reliably predict brain injury in premature infants.
Cerebral pressure passivity is common and fluctuates in the sick

premature infant; its role in prematurity-related brain injury remains
controversial, largely because cerebrovascular monitoring techniques
remain lacking.

WHAT THIS STUDY ADDS: We describe a continuous technique
for measuring the magnitude of cerebral pressure passivity at
the bedside of sick premature infants that uses transfer

functional analysis. Using this approach we confirm a significant
association between high-magnitude pressure passivity and GM/IVH.

abstract
OBJECTIVES: Cerebral pressure passivity is common in sick premature
infants and may predispose to germinal matrix/intraventricular hemor-
rhage (GM/IVH), a lesion with potentially serious consequences. We stud-
ied the association between the magnitude of cerebral pressure passivity
and GM/IVH.

PATIENTS ANDMETHODS: We enrolled infants�32 weeks’ gestational age
with indwelling mean arterial pressure (MAP) monitoring and excluded
infants with known congenital syndromes or antenatal brain injury. We
recorded continuousMAP and cerebral near-infrared spectroscopy hemo-
globin difference (HbD) signals at 2 Hz for up to 12 hours/day and up to 5
days. Coherence and transfer function analysis between MAP and HbD
signals was performed in 3 frequency bands (0.05–0.25, 0.25–0.5, and
0.5–1.0 Hz). Using MAP-HbD gain and clinical variables (including chorio-
amnionitis, Apgar scores, gestational age, birth weight, neonatal sepsis,
and Score for Neonatal Acute Physiology II), we built a logistic regression
model that best predicts cranial ultrasound abnormalities.

RESULTS: In 88 infants (median gestational age: 26 weeks [range 23–30
weeks]), early cranial ultrasound showed GM/IVH in 31 (37%) and paren-
chymal echodensities in 10 (12%) infants; late cranial ultrasound showed
parenchymal abnormalities in 19 (30%) infants. Low-frequency MAP-HbD
gain (highest quartile mean) was significantly associated with early GM/
IVH but not other ultrasound findings. The most parsimonious model as-
sociated with early GM/IVH included only gestational age and MAP-HbD
gain.

CONCLUSIONS: This novel cerebrovascular monitoring technique allows
quantification of cerebral pressure passivity as MAP-HbD gain in prema-
ture infants. High MAP-HbD gain is significantly associated with GM/IVH.
Precise temporal and causal relationship between MAP-HbD gain and
GM/IVH awaits further study. Pediatrics 2009;124:302–309
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Germinalmatrix/intraventricular hem-
orrhage (GM/IVH), the most commonly
diagnosed brain lesion in premature
newborns,1–4 has potentially serious
neonatal complications and lifelong
sequelae.5–11 Its prevention is impeded
by incomplete understanding of its un-
derlyingmechanisms and by lack of re-
liable bedside monitoring techniques
for identifying its hemodynamic ante-
cedents.

Both incidence and severity of GM/IVH
are greatest among the smallest, most
premature infants,1,12 suggesting a cen-
tral role for vascular and hemodynamic
immaturity in its development. In this
paradigm, systemic hemodynamic insta-
bility and inefficient cerebral pressure
autoregulation result in cerebral pres-
sure passivity, with rupture of fragile ce-
rebral vessels causing GM/IVH. We focus
on GM/IVH because of its enormous clin-
ical importance and rapid and reliable
identification by cranial ultrasound,
which unlike MRI allows early and re-
peated imaging at the bedside of sick in-
fants, enabling better temporal resolu-
tion between potential insults and brain
injury.

The overall purpose of this work was to
characterize cerebral pressure passiv-
ity in premature infants and identify fea-
tures of cerebral pressure passivity as-
sociated with brain injury. Cerebral
pressure passivity cannot currently be
detected at the bedside of critically ill in-
fants; development of techniques to do
so remains frustrated by challenges in
acquisition, analysis, and interpretation
of continuous cerebral and systemic he-
modynamic signals. To detect cerebral
pressure passivity in sick preterm in-
fants, we described identification of a
critical level of coherence between con-
tinuous measurements of blood pres-
sure and cerebral perfusion measured
as the hemoglobin difference (HbD) sig-
nal by near-infrared spectroscopy
(NIRS).13–15 Using this approach we de-
scribed a high prevalence of cerebral

pressure passivity in premature infants,
a population at significant risk for GM/
IVH.15 Our studies have shown that cere-
bral pressure passivity is not “all-or-
nothing” but fluctuates over time in a
manner that cannot be predicted by “hy-
potension” as currently defined.15 To
date, the relationship between preva-
lence of cerebral pressure passivity and
GM/IVH has been inconsistent.13,15 In this
study, we extend our investigations by
examining the association between the
magnitude of cerebral pressure passiv-
ity and development of GM/IVH.

METHODS

Subjects

Eligible infants were �32 weeks’ ges-
tational age at birth,�12 hours’ post-
natal age at onset of recording, and
required continuous mean arterial
pressure (MAP) monitoring through
an umbilical arterial catheter. Infants
with known congenital syndromes or
evidence by cranial ultrasound of ante-
natal brain injury were ineligible. In ad-
dition, we included only infants who
had cranial ultrasound studies be-
tween 5 to 10 and/or 30 days of life or
later. The study cohort was recruited
between 2000 and 2005 and described
in a previous report.15 The Brigham
and Women’s Hospital Institutional Re-
view Board approved the study; in-
formed written consent was obtained
in all cases.

Data Recording

Time-locked continuous MAP and NIRS
(NIRO-500 [Hamamatsu Photonics,
Hamamatsu City, Japan]) recordings
were made at 2 Hz for �12 hours on
each of the first 5 days of life or until
the umbilical arterial catheter was dis-
continued. MAP data from the bedside
monitor (Marquette, Milwaukee, WI)
and NIRS data were time-locked and
stored on a laptop. Cranial ultrasound
(Acuson Sequoia [Siemens, Malvern,
PA]) studies were obtained as clini-

cally indicated by the treating neona-
tologists.

Data Processing

Artifact detection and exclusion were
described elsewhere.15 Continuous
data were divided into 10-minute ep-
ochs. Changes in cerebral HbD concen-
tration signal were calculated as the
difference between changes in oxygen-
ated hemoglobin (HbO2) and hemoglo-
bin. A strong association between
changes in HbD and those in quantita-
tive cerebral blood flow has been vali-
dated in previous animal studies.16,17

We used a systems-analysis approach
based on the concept that function of a
biological regulating system may be
studied by examining the relationship
between input and output signals. Ap-
plication of coherence and transfer
function analysis to this approach has
become a powerful tool for the study of
biological systems,18,19 including cere-
bral autoregulation.20,21 Coherence at a
specific frequency describes the ex-
tent to which variability in the output
signal is attributable to variability in
the input signal. When coherence be-
tween signals reaches significance at
a specific frequency, transfer gain is
the magnitude of input signal power
passing through the system unmodi-
fied into the output signal. In this study,
we used a stringent threshold crite-
rion of 0.69 for statistically significant
coherence that was based on a pub-
lished algorithm.22 Intact cerebral
pressure autoregulation, which buff-
ers changes in the input blood pres-
sure to maintain constant output of ce-
rebral blood flow, presents as poor
coherence and low transfer gain be-
tween the signals, whereas cerebral
autoregulatory failure with cerebral
pressure passivity presents as the re-
verse.

We calculated the power spectrum for
each signal by using the Welch algo-
rithm23 with the direct current term
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(estimated from the epoch mean) re-
moved. Minimum frequency cutoff was
set conservatively at 0.05 Hz to ensure
that all power values were derived
from a statistically significant number
of samples. Power estimates above
0.05 Hz were considered significant be-
cause their confidence intervals,
based on 95% confidence, were �5%
of the interval observed at 0.004 Hz, the
lowest frequency at which the power
estimate was considered to be the
least statistically significant. Given our
sampling frequency of 2 Hz, the Nyquist
theorem24 allowed frequency-domain
analyses up to 1 Hz.

Next we calculated power spectral den-
sity (PSD) for MAP and HbD and the gain
spectrum of the transfer function be-
tween MAP and HbD. We then measured
coherence function between MAP and
HbD and excluded from further analysis
all components of the gain spectrum be-
low the coherence threshold for signifi-
cance.We thendivided thespectrum into
3major frequency bands: low (0.05–0.25
Hz), medium (0.25–0.5 Hz), and high
(0.5–1.0 Hz). The lower bound of the low-
frequency band was selected to exclude
those very low frequencies at which the
power estimate was not statistically sig-
nificant25 while still capturing frequen-
cies within which intact cerebral pres-
sure autoregulation would be expected
to operate, given its impulse response
times of 5 to 20 seconds.20,26,27

Continuous blood pressure recordings
were divided into 10-minute epochs.
For each epoch we calculated a value
of MAP-HbD gain in each of the 3 fre-
quency bands and for each subject the
mean gain across each frequency
band for all that subject’s epochs. Be-
cause impaired hemodynamics in a
single or relatively few “high-gain” ep-
ochs may be associated with GM/IVH,
we also calculated for each subject the
single highest gain in an epoch (maxi-
mum gain) as well as the highest quar-
tile mean (HQM) gain. We calculated

HQM gain by ranking the MAP-HbD gain
values, selecting the highest 25%, and
calculating themean gain for this high-
est quartile. This HQM-gain value was
the primary independent variable of in-
terest in our study.

Cranial Ultrasound Outcomes

Cranial ultrasound studies were inter-
preted by 2 experienced investigators
(Drs Di Salvo and du Plessis), blinded to
the clinical and study data, using stan-
dard diagnostic criteria.28,29 The primary
outcome was GM/IVH on a cranial ultra-
sound between 5 and 10 days after birth,
using the single ultrasound study on or
closest to day 5. We used 3 secondary
outcomes: (1) grade of GM/IVH (I–III)28,29;
(2) presence of parenchymal echodensi-
ties on this early cranial ultrasound
study; and (3) abnormalities on a late
cranial ultrasound (ie, on day 30 of life
or soonest thereafter). Parenchymal
echodensities were not categorized fur-
ther into suspected periventricular leu-
komalacia or periventricular hemor-
rhagic infarction (previously grade IV
GM/IVH). Echolucencies on early scans
were interpreted as evidence of antena-
tal injury, and infants showingsuchwere
excluded from the study.30 Late ultra-
soundstudy resultswere consideredab-
normal if ventriculomegaly or parenchy-
mal echolucency was present.

Clinical Factors Associated With
Cranial Ultrasound Outcomes or
Frequency-Domain Indices

We documented specific clinical fea-
tures for each infant, including use of
maternal steroids, diagnosis of chorio-
amnionitis (clinical and/or placental
pathology), birth weight, gender, ges-
tational age, 5-minute Apgar scores,
neonatal pressor/inotrope use, neona-
tal sepsis, carbon dioxide (CO2) mea-
surements, and Score for Neonatal
Acute Physiology II. CO2 levels were ob-
tained from intermittent clinically indi-
cated blood gas measures; continuous
CO2measurements were not in routine

use in our ICU. Pressor/inotrope man-
agement in our ICU is individualized by
the attending neonatologist and not
based solely onMAP thresholds. Gesta-
tional age was used as a continuous
and categorical (23–25, 26–28, and
29–30 weeks) variable. Finally, we cal-
culated mean MAP for each epoch of
data and examined relationships be-
tween mean MAP, PSD-MAP, PSD-HbD,
and MAP-HbD gain in each epoch for
the 3 frequency bands.

Data-Analysis Methods

Our primary hypothesis was that high
MAP-HbD gain would predict GM/IVH on
early cranial ultrasound. For each in-
fant, we examined the association be-
tween cranial ultrasound findings and
each of the mean, maximum, and HQM
MAP-HbD gain values. The statistical
method used to test this hypothesis
was model building through logistic
regression.

Because the relationship between the
MAP-HbD gain measures and cranial
ultrasound events is not known, sev-
eral models were considered before
settling on a model that best fit the
data. The models fit included transfor-
mations of the MAP-HbD gain variable
in each of the 3 frequency bands and
inclusion into the model of the clinical
variables (described above). Model
comparison was made through AIC
(Akaike information criteria) and like-
lihood ratio tests when appropriate.
Separate analyses were performed for
each dependent variable.

RESULTS

We studied 88 infants with gestational
ages of 23 to 30 weeks (median: 26
weeks) at birth. Mean birth weight was
896 g (range: 460–1490 g). Relevant
clinical and demographic features are
described in Table 1. Three infants died
in the newborn period; this small num-
ber precluded further analysis with
death as outcome.
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Median onset of recordings was 11
hours (range: 4–52 hours) after birth,
and their median duration was 75.2
hours (range: 9.9–104.3 hours). We an-
alyzed 9120 ten-minute epochs, amean
of 101 per patient (range: 18–202 per
patient). Median postnatal age at cra-
nial ultrasound was 8 days (range:
5–10 days) for early studies and 32
days (range: 30–78 days) for late stud-
ies. The frequency and distribution of
cranial ultrasound abnormalities ac-
cording to gestational-age category
are shown in Table 1.

Unadjusted Analysis

To analyze the association between
GM/IVH and the clinical variables, we
first fit each variable individually. Asso-
ciation between GM/IVH and these clin-
ical variables was nonsignificant (P�

.05) for all variables. A majority of the
infants were exposed to maternal ste-
roids (n � 77) and neonatal pressor
support (n � 78) during the first 5
days of life, precluding a meaningful
analysis of their role.

Predictors of GM/IVH on Early
Cranial Ultrasound

We fit models for each of the 3 major
frequency bands. Results were signifi-
cant only in the low-frequency band,

and subsequent discussion relates
only to these low-frequency measures
of MAP-HbD gain. Higher HQM gain was
significantly associated with in-
creased likelihood of GM/IVH on early
cranial ultrasound scans (Table 2) but
only weakly correlated with GM/IVH
grade. The other significant factor in-
cluded with HQM gain in the same
model was continuous gestational age.
Association between gestational age
and GM/IVH was negative; the smaller
the gestational age, the greater likeli-
hood of GM/IVH. Chorioamnionitis,
5-minute Apgar scores, neonatal sep-
sis, mean MAP, birth weight, and Score
for Neonatal Acute Physiology II were
strongly collinear with gestational age
and not important predictors of GM/
IVH once gestational age and HQM gain
were included in themodel. This model
is the most parsimonious model that
explains the response, GM/IVH.

Predictors of Other Cranial
Ultrasound Abnormalities

Measures of MAP-HbD gain were
poorly correlated with parenchymal
echodensities on early cranial ultra-
sound as well as with any abnormal
findings on late cranial ultrasound.
Gestational age was significantly and

inversely correlated with abnormal
late cranial ultrasound studies (P �
.05), but other clinical variables were
not significant predictors once gesta-
tional age was included in the model.

Other independent variables were con-
sidered in the model in place of HQM
gain, including mean gain, maximum
gain, and mean, maximum, and HQM of
PSD MAP and PSD HbD. Mean and max-
imum MAP-HbD gain values were sig-
nificant predictors of GM/IVH (Table 2),
although mean gain was marginally
so. Neither PSD MAP nor PSD HbD was
a significant predictor of GM/IVH. None
of the hemodynamic indices described
predicted other cranial ultrasound ab-
normalities. Low-frequency PSD MAP
correlated positively (r � 0.20; P �
.001) with gestational age but not with
GM/IVH.

DISCUSSION

In this study we show a significant as-
sociation between high-magnitude ce-
rebral pressure passivity and develop-
ment of GM/IVH in premature infants.
Using the gain between changes in
MAP and those in cerebral HbD (mea-
sured by NIRS), we describe transfer of
blood pressure power into the cere-
bral circulation, thereby quantifying

TABLE 1 Clinical and Cranial Ultrasound Characteristics of the Population as an Overall Group and Within the 3 Gestational-Age Groups

Overall Group 23–25 wk 26–28 wk 29–30 wk

Clinical feature
Chorioamnionitis, n/N (%) 16/86 (19) 5/24 (21) 9/51 (18) 2/11 (18)
Maternal steroids, n/N (%) 77/88 (87.5) 22/24 (91.7) 46/52 (88.5) 9/11 (81.8)
Gender male, n/N (%) 51/88 (58.0) 16/24 (67.7) 29/52 (55.8) 6/11 (54.5)
Neonatal sepsis, n/N (%) 25/87 (29) 11/24 (45) 13/52 (25) 1/11 (9)
SNAP-II score, mean (range) 23 (0–56) 32 (5–56) 21 (0–40) 14 (0–26)
Pressor support, n/N (%) 78/87 (90) 24/24 (100) 46/52 (88) 8/11 (72)
Cranial ultrasound findings
Early cranial ultrasound, n 84 23 52 9
GM/IVH, n (%) 31 (37) 13 (57) 15 (29) 3 (33)
Grade I 6/84 (7) 1/23 (4) 4/52 (8) 1/9 (11)
Grade II 14/84 (14) 9/23 (39) 3/52 (6) 2/9 (22)
Grade III 11/84 (11) 3/23 (13) 8/52 (16) 0/9 (0)
Parenchymal EDs, n (%) 10 (12) 5 (22) 5 (10) 0 (0)
GM/IVH or ED, n (%) 31 (37) 13 (57) 15 (29) 3 (33)
Late cranial ultrasound, n 63 20 37 6
Parenchymal abnormality, n (%) 19 (30) 10 (50) 9 (25) 0 (0)

SNAP-II indicates Score of Neonatal Acute Physiology II; ED, echodensity.
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the magnitude of cerebral pressure
passivity. The only 2 predictors show-
ing a significant independent associa-
tion with GM/IVH are lower gestational
age and high MAP-HbD gain. Associa-
tion between MAP-HbD gain and GM/
IVH is significant only in the low-fre-
quency range, where intact cerebral
pressure autoregulation would be ex-
pected to prevent cerebral pressure
passivity.20,26,31

“Power” of signals in the frequency do-
main measures their variance at spe-
cific frequencies. Notably, although
high MAP-HbD gain in the low-fre-
quency band predicted GM/IVH, spec-
tral power (variance) of neither MAP
nor HbD in isolation was associated
with GM/IVH.

We previously used coherence func-
tion analysis13–15 in sick premature in-
fants to describe high prevalence of
cerebral pressure passivity that
waxed and waned over relatively short
periods, being present on average
�20% of the time and increasing with
lower gestational age.15 However, al-
though this coherence-based ap-
proach is valuable for identifying the
presence of cerebral pressure passiv-
ity, it does not reflect the magnitude of
blood pressure power passing from
systemic to cerebral circulation; per-
haps not surprising, then, we found no
significant association between preva-
lence of cerebral pressure passivity
and GM/IVH in these premature in-
fants.15 To further examine the impact
of cerebral pressure passivity, we
measured transfer gain between

blood pressure and cerebral HbD sig-
nals during periods of significant co-
herence.

In the absence of bedside techniques
for continuous monitoring of cerebral
perfusion, clinicians have had to base
their management of cerebral perfu-
sion in critically ill infants on the as-
sumption that maintaining blood
pressure between certain population-
based normal limits32–34 would opti-
mize cerebral pressure-flow regula-
tion and cerebral blood flow and
minimize the risk of cerebrovascular
injury. However, data from our stud-
ies15,35 and others36–38 have seriously
challenged this approach. In our re-
cent studies of premature infants, nei-
ther mean blood pressure15 nor dura-
tion of hypotension (as defined by
different commonly used criteria)35

was associated with GM/IVH. Conse-
quently, the benefit of medications
used to achieve blood pressure goals,
and even the potentially injurious role
of these agents, has come under scru-
tiny.36–42

Variability of systemic blood pressure
has also been implicated in the patho-
genesis of GM/IVH,34,43–47 with this
blood pressure fluctuation ascribed to
factors such as autonomic48,49 and
myocardial immaturity and positive
pressure ventilation.46,50,51 However,
others have described a decrease in
blood pressure variability among in-
fants at greatest risk for GM/IVH (ie,
those with lowest gestational age).
Menke et al52 showed that in prema-
ture infants the spectral power (vari-

ability) in both MAP and cerebral per-
fusion are low soon after birth (when
risk of GM/IVH is highest), increasing
thereafter over the first 4 days of life.
In our studies, blood pressure variabil-
ity has not been a significant indepen-
dent predictor of GM/IVH, whether
measured as frequency-domain spec-
tral power in the current study or in
our earlier time-domain studies.15,35 Of
interest, variability in cerebral HbD in
the current study was not associated
with GM/IVH. In fact, spectral power in
both the MAP and cerebral HbD signals
was directly related to gestational age,
whereas the incidence of GM/IVH was
inversely related to gestational age.
Taken together, these data suggest
that variabilities in MAP and HbD are
poor predictors of GM/IVH in isolation,
but when the relationship between
these 2 signals is quantified by using
gain, the association with GM/IVH may
be significant. Therefore, monitoring
systemic blood pressure or cerebral
HbD separately will not identify infants
at risk for GM/IVH.

This study has a number of strengths.
A large number of infants were studied
for prolonged periods by using high-
frequency sampling rates for both sys-
temic and cerebral hemodynamic sig-
nals. Rigorous criteria were used to
exclude potential artifact, and coher-
ence constraints on transfer function
analysis were stringent. We excluded
subjects with evidence of antenatal in-
jury and based our early cranial ultra-
sound outcomes on studies performed
soon after the expected time by which
the vast majority of GM/IVHs would
have occurred.28

Because cranial ultrasound is particu-
larly sensitive to hemorrhage, it is un-
likely that any significant GM/IVH went
undetected. However, several impor-
tant limitations of our study need to be
considered. First, cranial ultrasound
studies were clinically indicated, with
their timing inconsistent among sub-

TABLE 2 Significance (P) of Relationship Between Predictive Model (Includes Gestational Age) and
GM/IVH for the Different Frequency Bands

LF (0.05–0.25 Hz) MF (0.25–0.5 Hz) HF (0.5–1.0 Hz)

Hemodynamic function
MAP PSD .15 .11 .49
HbD PSD .75 .85 .96
MAP-HbD gain
Mean gain .05 .44 .85
Maximum gain .03 .77 .79
HQM gain .03 .53 .98

LF, MF, and HF indicate low-, medium-, and high-frequency bands, respectively.
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jects. Therefore, precise timing of the
GM/IVH lesions is not possible, which
limited our ability to define the tempo-
ral association between hemodynamic
measures and GM/IVH. Furthermore,
although we attempted to start our re-
cordings as early as possible after
birth, there were inevitable delays
caused by enrollment, arterial line
placement, and a complex recording
set-up. Our studies lasted a maximum
of 12 hours on each study day and may
have missed important hemodynamic
changes outside these recording peri-
ods. Although cranial ultrasound is
sufficiently sensitive to detect hemor-
rhagic lesions and larger ischemic le-
sions, its ability to detect more modest
and diffuse forms of parenchymal in-
jury is significantly limited. Our goal
was to investigate the relationship be-
tween cerebral pressure passivity and
cranial ultrasound evidence of brain
injury. The study population, infants in
whom clinical hemodynamic concerns
warranted indwelling arterial catheter
placement and a high rate of pressor/

inotrope use, represents a population
at high risk for pressure passivity and
for cranial ultrasound lesions. How-
ever, these features of our population
may limit the generalizability of our
findings. Finally, because we did not
measure continuous CO2 levels and
our blood gas measurements were of-
ten hours apart, the role of CO2 levels
in cerebral pressure passivity and GM/
IVH could not be tested reliably.

CONCLUSIONS

This study extends our characteriza-
tion of cerebral pressure passivity in
sick premature infants, showing that
magnitude of cerebral pressure pas-
sivity is significantly associated with
GM/IVH. Independent measures of
changes in systemic blood pressure
and cerebral perfusion were not asso-
ciated with GM/IVH, emphasizing the
importance of monitoring interactions
between systems in critically ill pa-
tients. Future studies will focus on
more precise timing of GM/IVH injuries
to determine if the relationship be-

tween high-magnitude cerebral pres-
sure passivity and these lesions is
causative. Finally, nonhemorrhagic in-
juries may be missed on cranial ultra-
sound and will require the availability
of brain-imaging techniques that are
not only sensitive to hypoxia-ischemia/
reperfusion injury but also capable of
early and repeated scanning in sick
premature infants.
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